kuva
Etusivu / Lapin ammattikorkeakoulu - Lapin AMK / Esittely / Ajankohtaista / Terästeollisuus vihreässä kehityksessä

Terästeollisuus vihreässä kehityksessä

13.12.2021



Kirjoittajan kasvot.
DI Sara Kuure työskentelee asiantuntijana Uudistuvan teollisuuden -osaamisryhmässä Lapin ammattikorkeakoulussa.

Nyky-yhteiskunnassa teräs on välttämättömyys sen hyvien ominaisuuksien, kuten kestävyyden, pitkäikäisyyden, muokattavuuden ja kierrätettävyyden ansiosta.

Vuonna 2020 teräksen vuotuinen keskimääräinen kulutus henkilöä kohden oli globaalilla tasolla 230 kilogrammaa. Kuluneen 20 vuoden aikana sen kulutus henkilöä kohden on kasvanut peräti 80 kilogrammaa, ja tämän hetkisten ennusteiden mukaan teräksen kysyntä tulee entisestään nousemaan tämän hetkisestä tasosta noin 20 prosentilla.

Teräksen kulutus ja tuotanto on nykypäivänä valtavassa mittakaavassa, noin 1,9 miljoonaa tonnia, ja sen käyttö tulee kasvamaan entisestään vihreän kehityksen myötä. Teräksen valmistaminen ja pitkäikäinen käyttö edesauttaa jätteetöntä teknologiaa ja lisää kierrätystä huomattavasti. Tämän takia teräs on olennainen osa kiertotaloutta ja kestävää tulevaisuutta. (World Steel Association 2020 a; World Steel Association 2020 b)

Teräksen päästökehitys ja sen vaikutukset

Teräksen valmistus on materiaali- ja energiaintensiivinen tuotannon ala. Peräti 8 prosenttia maailmanlaajuisesta energiatuotannosta kohdistuu terästeollisuuden prosesseihin. Energia-alan tuottamasta hiilidioksidipäästöistä terästeollisuus tuottaa noin 7 prosenttia.

Uudet teknologiainnovaatiot edistävät hiilineutraalia ja resurssiviisasta terästeollisuutta. Innovaatioiden myötä teollisuudella on laajat mahdollisuudet pienentää energiakulutusta, kasvihuonekaasuja ja täten kehittää pitkäikäisiä, kierrätettäviä ja kestäviä tuotteita. Tuotetun terästonnin energiatarpeessa näkyy jo nyt selvästi laskeva trendi.

Viimeisen 50 vuoden aikana kehitystä on tapahtunut hyvään suuntaan, sillä tarvittava energiamäärä tuotettua terästonnia kohden on tippunut noin 60 prosenttia, kuten kuvasta 1 nähdään. Kun otetaan maailmanlaajuisen terästuotannon kokonaisenergiatarpeet huomioon, energiantarve on selvästi kasvussa, sillä tuotantomäärät ovat kasvaneet huomattavasti. Kasvua selittää muun muassa Aasian, Intian ja Afrikan valtaisa taloudellinen kehitys. (International Energy Agency 2021; International Energy Agency 2020 a; World Steel Association 2021 c)

Kaavio 1 Kuure.jpg

Kaavio 1. Teräksen tuotantomäärät ja energiatarpeet tuotettua terästonnia kohden. (Word Steel Association 2021 c)
Terästä voidaan kierrättää yhä uudelleen ja uudelleen huomioiden kuitenkin kierrätysteräksen mukana tuomat epäpuhtaudet. Suurin osa epäpuhtauksista poistuu prosessoinnin aikana, mutta tietyt epäpuhtaudet, kuten kupari, ovat jatkuvan kierrätyksen kannalta haasteellisia.

Terästen kierrätys ja kierrätysromun käyttö uudelleenvalmistuksessa mahdollistaa alhaisemmat hiilidioksidipäästöt ja vähäisemmät energiatarpeet. Käytettäessä terästeollisuuden tuotannossa yhden tonnin verran kierrätysterästä, hiilidioksidipäästöt pienenevät keskimäärin noin 1,5 tonnia. Samaan aikaan louhittavaa rautamalmia tarvitaan 1,4 tonnia vähemmän sekä malmin pelkistyksessä muun muassa tarvittavan koksin määrä pienenee 740 kilogramman edestä. Yhden tonnin korvaaminen kierrätysromulla laskee myös kalkkikiven määrää keskimäärin 120 kilogrammalla. Kierrätysteräksen käytöllä on siis suuret vaikutukset resurssiviisaaseen materiaalin hallintaan. (World Steel Association 2021 a)

Vielä kuitenkin noin 70 prosenttia maailmanlaajuisesta terästuotannon raaka-aineista on peräisin neitseellisestä rautamalmista. Tällä hetkellä teräksen kulutus on kuitenkin niin suurta, ettei kierrätysteräs riitä kattamaan raaka-ainemääriä, joten neitseellistä malmia tarvitaan runsaasti. (World Steel Association 2021)

Ilmastotavoitteisiin vauhtia eri menetelmillä

Vuonna 2020 tehdyssä globaalissa tutkimuksessa yksi tuotettu terästonni tuotti valmistuksen aikana keskimäärin 1,85 tonnia hiilidioksidipäästöjä taivaalle. Tuotetun terästonnin päästöihin vaikuttaa huomattavasti prosessimenetelmät, pääosin rautamalmin ja kierrätysteräksen suhde. Terästeollisuus on yksi saastuttavimmista teollisuuden aloista, joten tämä on huomioitu laajasti ilmastotavoitteissa. (World Steel Association 2021)

Nykyiset maailmanlaajuiset ilmastotavoitteet painostavat terästeollisuutta vähentämään päästöjä 50 prosentilla vuoteen 2050 mennessä vuoden 2019 päästötasoon verrattuna. Tämä on mahdollista saavuttaa muun muassa lisäämällä kierrätysteräksen määrää ja uusimalla tuotantoteknologiaa vähähiilisemmiksi menetelmiksi. Ilmastotavoitteiden saavuttamisessa terästeollisuudessa on ehdotettu sekä lyhyen että pitkän aikavälin hiilidioksidipäästöjen vähennystavoitteita ja niitä mahdollistavia menetelmiä. (International Energy Agency 2021) & (World Steel Association 2021 b)

Lyhyen aikavälin hiilidioksidipäästöjen vähennys voisi mahdollistaa muun muassa kehittämällä prosesseja energiatehokkaimmaksi ja kiihdyttämällä teräsromun keräämistä ja käyttämistä osana raaka-aineita. (International Energy Agency 2021)

Pitkän aikavälin päästöjen vähennystavoitteet liittyvät kokonaan uusien vähähiilisten tuotantomallien omaksumiseen. Tästä muutamia esimerkkejä ovat suorapelkistysraudan (DRI, engl. Direct Reduced Iron) valmistus, uusien sulatusteknologioiden kehittäminen ja jalkauttaminen tuotantoon, vetyteknologiset ratkaisut sekä hiilidioksidin talteenotto, varastointi ja uudelleen hyödyntäminen. Nämä uuden teknologian mahdollisuudet ovat avattu hieman kattavammin seuraavassa kappaleessa. (International Energy Agency 2021)

Uudet ympäristöystävällisemmät prosessiteknologiat

Yhtä tiettyä ratkaisua ei ole, joka mahdollistaisi kunnianhimoiset päästötavoitteet hiilidioksidin vähentämisessä terästeollisuudessa. Hiili on tällä hetkellä vielä välttämätön pelkistin teräksen tuotannossa, kun prosessoidaan vielä oksidipohjaista malmia raaka-aineena. Eräs vaihtoehto olisi korvata fossiilinen hiili koksimuodossa esimerkiksi biopohjaisella hiilellä.

Biohiiltä pystytään valmistaan jo esimerkiksi metsäteollisuuden sivuvirroista, kuten hakkeesta ja kuorijakeesta. Ongelmana biohiilen käytössä on kuitenkin sen riittävä saatavuus ja fysikaaliskemialliset ominaisuudet terästeollisuuden tarpeissa. Biohiilen korvatessa osittain fossiilisen hiilen tarvitaan valtavasti biopohjaisen materiaalin käsittelyä pyrolyysissä biohiileksi. Toinen tutkimuksen alla oleva ongelma liittyy biohiilen reaktiivisuuteen ja sen liukoisuuteen terässulassa. (Oulun yliopisto 2020)

Toinen vaihtoehto vähentää hiilidioksidipäästöjä on käyttää hiilen talteenottoa ja varastointia eli CCUS (engl. Carbon Capture, Use and Storage). Hiilen talteenottoa ja varastointia voidaan käyttää suuremmille hiilenpäästökohteille, kuten esimerkiksi terästeollisuuden masuuniprosessille, mutta talteenotto ei ole vielä saanut laajemmin jalansijaa tuotannossa. Talteenotettua hiilidioksidia voitaisiin myös hyödyntää uudenaikaisessa vähähiilisessä suorapelkistyksessä. Yleisempi tapa on kuitenkin kompressoida kerätty hiilidioksidikaasu ja injektoida se syvälle maan sisään, esimerkiksi lähelle öljyalueita, niin että se ei pääse ilmakehän kanssa kosketuksiin. (World Steel Association 2021 d)

Sähköenergian lisääntyvä käyttö mahdollistaa myös vähäpäästöisemmän teräksen tuotannon. Alalla on ollut jo vuosikausia käytössä suuria sähköuuneja, eli valokaariuuneja kierrätysteräksen sulattamiseen. On arvioitu, että valokaariuunien käyttö tulee valtavasti lisääntymään seuraavien vuosikymmenten aikana, kun kierrätysteräksen osuus koko raaka-ainemäärästä kasvaa selvästi. Kun sähköenergian tarve kasvaa, tulee yhdeksi suureksi pohdinnaksi riittävä sähkön tuotanto ja erityisesti se, miten sähkö on tuotettu, jotta saavutetaan vähäpäästöinen tuotanto. (World Steel Association, 2021 a)

Sähköenergiaa tarvitaan myös valtavia määriä hiilineutraalin vetypelkistyksen ohella vedyn valmistuksessa. Yleisin tapa valmistaa vetyä terästeollisuuden käyttöön on vetyelektrolyysi, jossa vesimolekyylit hajotetaan vedyksi ja hapeksi. Tuotantoa voidaan vasta sitten sanoa hiilineutraaliksi, kun käytetty sähkö on tuotettu fossiilittomasti, esimerkiksi tuuli- tai aurinkoenergian avulla. (World Steel Association, 2021 e)

Kun keskitytään oksidipohjaisen rautamalmin pelkistykseen, pelkistyminen voidaan joko tehdä edellä mainittujen hiilen tai vedyn avulla. Kolmas tapa, joka on vasta laboratoriomittakaavassa kehitteillä, on rautamalmin pelkistäminen sähkön avulla sähkökemiallisessa prosessissa. Tässä menetelmässä malmi on piidioksidin ja kalsiumoksidin ympäröimänä noin 1600 celsiusasteen lämpötilassa. Prosessiin johdetaan sähkövirta, joka johtaa lopulta raudan pelkistykseen. Jos käytettävä sähkövirta on tuotettu ilman hiiltä, menetelmässä ei synny laisinkaan hiilidioksidipäästöjä. (World Steel Association, 2021 f)

Teräs kestävässä kehityksessä – kiertotalouden periaatteet

Terästä voidaan sanoa yhdeksi teollisen kiertotalouden vaikuttavimmaksi materiaaliksi. Tutkimus- ja kehitystyön avulla teräksen ominaisuuksia pystytään muokkaamaan niin, että teräsmateriaalia tarvitaan vähemmän. Tästä eräs esimerkki on ultralujien terästen kehittäminen, jolloin esimerkiksi kuljetusvälineissä ajoneuvo pystyy kuljettamaan suurempia määriä tavaraa samalla, kun ajoneuvo on kevyempi. Näin polttoaineen kulutus pienenee ja päästöt vähenevät. (World Steel Association 2021 c)

Tuotekehityksen ohella teräs on uudelleenkäytettävää joko alkuperäisessä käyttökohteessa tai muokkaamalla käytössä ollut teräs kokonaan uuteen käyttökohteeseen tilanteesta riippuen. Terästä voidaan kunnostaa mekaanisesti esimerkiksi hiomalla ja sorvaamalla. Lisäksi korjaushitsauksilla tuotteen käyttöikää voidaan huomattavasti pidentää. Myös teräksen sivuvirrat ovat melko hyvin hyödynnetty eri vaihtoehtoihin. Esimerkiksi kuonaa voidaan käyttää sementin korvaajana, tiepohjissa sekä asfaltissa. Metallipitoista pölyä voidaan käyttää esimerkiksi uudelleen pelleteissä ja briketeissä. Lisäksi prosessin hukkalämpö voidaan johtaa kaukolämpöverkkoon tai se voidaan hyödyntää tehtaan muissa prosesseissa, samoin kuin savukaasujen energia. (World Steel Association 2021 c)

Uudelleen valmistus ja kierrätys ovat terästeollisuuden ja myös teollisen kiertotalouden keskeinen osa. Tiensä päässä olevat teräksiset tuotteet voidaan uudelleen valmistuksella palauttaa takaisin käyttöön. Jos uudelleen valmistukselle ei löydy selvää kohdetta tai tuote ei muuten sovellu uudelleen käyttöön, pitää terästuote lopulta palauttaa kierrätyspisteille. Tämän jälkeen teräs saa uuden elämän sulatuksen jälkeen. Tämä säästää luonnonvarojen ja energian käyttöä sekä pienentää ympäristöön kohdistuvia rasitteita. (World Steel Association 2021 c)

Lopuksi

Ilmastotavoitteiden, asiakasvaatimusten ja kestävän tulevaisuuden myötä myös terästeollisuuden parissa on lisätty tehoja uusien vähäpäästöisempien ja kestävien ratkaisuiden löytämiseksi. Suurten ja vakiintuneiden korkealämpötilaprosessien muuttaminen hiilineutraaliksi on valtava kehitysaskel tällä tuotannon saralla. Kun tuotantoja viilataan kestävämmäksi ja vähäpäästöisemmäksi, on mahdollista saavuttaa maailmanlaajuiset päästötavoitteet. Se vaatii paljon pitkäjänteistä työtä, uusia innovaatioita ja investointeja.

Blogikirjoitus on kirjoitettu Teollisen kiertotalouden osaamisalusta -hankkeessa (TKO), jota toteuttavat yhteistyössä Lapin ammattikorkeakoulu ja Kemin Digipolis. Hanketta rahoittavat Työ- ja elinkeinoministeriö ja Sitra.

Lähteet

International Energy Agency, 2020 a. Iron and Steel Technology Roadmap. Saatavilla: https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf

International Energy Agency, 2021. Iron and Steel. Saatavilla: https://www.iea.org/reports/iron-and-steel

Oulun yliopisto, 2020. Vähähiilisempää terästuotantoa valokaariuunilla. Saatavilla: https://www.oulu.fi/yliopisto/uutiset/valokaariuunilla-vahahiilisempaa-terasta.

World Steel Association, 2020 a. Total production of crude steel. Saatavilla: https://www.worldsteel.org/steel-by-topic/statistics/annual-production-steel-data/P1_crude_steel_total_pub/CHN/IND

World Steel Association, 2020 b. A healthy economy needs a healthy steel industry providing employment and driving growth. Saatavilla: https://www.worldsteel.org/about-steel/about-steel/steel-industry-facts/healthy-economy.html

World Steel Association, 2021 a. Scrap use in the steel industry. Saatavilla: https://www.worldsteel.org/en/dam/jcr:2a96b408-325e-4691-ae50-10c43c3a90fd/scrap_vf.pdf.


World Steel Association, 2021 b. Climate change and the production of iron and steel. Saatavilla: https://www.worldsteel.org/en/dam/jcr:228be1e4-5171-4602-b1e3-63df9ed394f5/worldsteel_climatechange_policy%2520paper.pdf.

World Steel Association, 2021 c. Steel - The permanent Material in the circular economy. Saatavilla: https://circulareconomy.worldsteel.org/.

World Steel Association, 2021 d. Carbon capture and storage (CCS). Saatavilla: https://www.worldsteel.org/en/dam/jcr:9480b8a4-1ff8-4b46-80c7-0a78fcd2d04b/Carbon%2520Capture%2520Storage_vf.pdf.

World Steel Association, 2021 e. Hydrogen (H2)-based ironmaking. Saatavilla: https://www.worldsteel.org/en/dam/jcr:2f02dcdb-9ae8-46e1-ae05-a9797b03d6bd/Hydrogen_vf.pdf.

World Steel Association, 2021 f. Electrolysis in ironmaking. Saatavilla: https://www.worldsteel.org/en/dam/jcr:5684bdc7-921b-4492-9726-c6a7f90f94d0/Electrolysis_vf.pdf.

 

> Siirry Pohjoisen tekijät -blogin etusivulle



Kommentit

Lisää kommentti
Anja 20.12.2023 10:10
Tuttavamme työskentelee tehtaalla, jossa valmistetaan teräsrakenteita yrityksille. Täytyypä jutella hänen kanssaan, miten heidän firmassa on tämä vihreä kehitys otettu huomioon. Tuo onkin hyvä tietää, että teräs on olennainen osa kiertotaloutta ja kestävää kehitystä. https://hallipojat.com/terasrakentaminen/